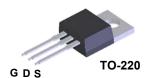


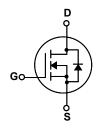
March 2013

FQP16N25C / FQPF16N25C

N-Channel QFET® MOSFET


250 V, 15.6 A, 270 m Ω

Description


This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor®'s proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

Features

- 15.6 A, 250 V, $R_{DS(on)}$ =270 m $\Omega(Max.)$ @ V_{GS} =10 V, I_D =7.8 A
- Low Gate Charge (Typ. 41 nC)
- Low C_{rss} (Typ. 68 pF)
- 100% Avalanche Tested

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		FQP16N25C	FQPF16N25C	Unit
V_{DSS}	Drain-Source Voltage		250		V
I _D	Drain Current - Continuous (T _C = 25°C)		15.6	15.6 *	Α
	- Continuous (T _C = 100°C)		9.8	9.8 *	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	62.4	62.4 *	Α
V_{GSS}	Gate-Source Voltage		± 30		V
E _{AS}	Single Pulsed Avalanche Energy		410		mJ
I _{AR}	Avalanche Current	(Note 1)	15.6		Α
E _{AR}	Repetitive Avalanche Energy (Note 1)		13.9		mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		5.5		V/ns
P _D	Power Dissipation (T _C = 25°C)		139	43	W
	- Derate above 25°C		1.11	0.34	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150		°C
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300		°C

^{*} Drain current limited by maximum junction temperature.

Thermal Characteristics

Symbol	Parameter	FQP16N25C	FQPF16N25C	Unit
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	0.9	2.89	°C/W
$R_{\theta JS}$	Thermal Resistance, Case-to-Sink Typ.	0.5		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	62.5	62.5	°C/W

vata viation	Test Conditions	Min	Тур	Max	Unit
acteristics					
Orain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA				V
Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.31		V/°C
Zana Oata Walta na Busin Oursent	V _{DS} = 250 V, V _{GS} = 0 V			10	μΑ
IDSS Zero Gate Voltage Drain Current	V _{DS} = 200 V, T _C = 125°C		-	100	μΑ
Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
acteristics					
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0		4.0	V
Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 7.8 A		0.22	0.27	Ω
Forward Transconductance	V _{DS} = 40 V, I _D = 7.8 A (Note 4)		10.5		S
nput Capacitance Dutput Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz		830 170	1080 220	pF pF
	7 20				pF
Reverse Transfer Capacitance			68	89	pF
g Characteristics					
g Characteristics Turn-On Delay Time	V - 125 V I - 15 6 A		15	40	ns
	V _{DD} = 125 V, I _D = 15.6 A,		15 130	40 270	ns
Turn-On Delay Time	V_{DD} = 125 V, I_{D} = 15.6 A, R_{G} = 25 Ω				
Furn-On Delay Time Furn-On Rise Time	_ = _ =		130	270	ns
Turn-On Delay Time Furn-On Rise Time Furn-Off Delay Time	$R_G = 25 \Omega$ (Note 4, 5)		130 135	270 280	ns ns
Furn-On Delay Time Furn-On Rise Time Furn-Off Delay Time Furn-Off Fall Time	$R_G = 25 \Omega$		130 135 105	270 280 220	ns ns ns
3 3 3 3 5 5 5 T 5 5 T 5 T 5 T 5 T 5 T 5	Cate-Body Leakage Current, Reverse Acteristics State Threshold Voltage Static Drain-Source On-Resistance Forward Transconductance Characteristics Input Capacitance Output Capacitance	Lero Gate Voltage Drain Current $V_{DS} = 200 \text{ V}, T_{C} = 125^{\circ}\text{C}$ Gate-Body Leakage Current, Forward $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$ Gate-Body Leakage Current, Reverse $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ Incteristics Gate Threshold Voltage $V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$ Static Drain-Source $V_{GS} = 10 \text{ V}, I_{D} = 7.8 \text{ A}$ Forward Transconductance $V_{DS} = 40 \text{ V}, I_{D} = 7.8 \text{ A}$ (Note 4) Characteristics Input Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, I_{D} = 1.0 \text{ MHz}$	Lero Gate Voltage Drain Current $V_{DS} = 200 \text{ V}, T_C = 125^{\circ}\text{C}$	Lero Gate Voltage Drain Current $V_{DS} = 200 \text{ V}, T_C = 125^{\circ}\text{C}$ Gate-Body Leakage Current, Forward $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$ Gate-Body Leakage Current, Reverse $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$	Lero Gate Voltage Drain Current $V_{DS} = 200 \text{ V}, T_{C} = 125 ^{\circ}\text{C}$ 100 Gate-Body Leakage Current, Forward $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$ 100 Gate-Body Leakage Current, Reverse $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ 100 Gate-Body Leakage Current, Reverse $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ 100 Gate-Body Leakage Current, Reverse $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ 100 Gate-Body Leakage Current, Reverse $V_{GS} = -30 \text{ V}, V_{DS} = 250 \text{ μA}$ 2.0 4.0 Gate Threshold Voltage $V_{DS} = V_{GS}, I_{D} = 250 \text{ μA}$ 2.0 4.0 Gate Threshold Voltage $V_{DS} = 10 \text{ V}, I_{D} = 7.8 \text{ A}$ 0.22 0.27 Groward Transconductance $V_{DS} = 40 \text{ V}, I_{D} = 7.8 \text{ A}$ (Note 4) 10.5 Characteristics Groward Transconductance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, I_{D} = 7.8 \text{ A}$ (Note 4) 170 220 Gutput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, I_{D} = 7.8 \text{ A}$ 10.80 Gutput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, I_{D} = 7.8 \text{ A}$ 10.80 Gutput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, I_{D} = 7.8 \text{ A}$ 10.80 Gutput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, I_{D} = 7.8 \text{ A}$ 10.80 Gutput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, I_{D} = 7.8 \text{ A}$ 10.80 Gutput Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, I_{D} = 7.8 \text{ A}$ 10.80 Gutput Capacitance $V_{DS} = 25 \text{ V}, V_{DS} = 0 \text{ V}, I_{D} = 7.8 \text{ A}$ 10.80 Gutput Capacitance $V_{DS} = 25 \text{ V}, V_{DS} = 0 \text{ V}, I_{D} = 7.8 \text{ A}$ 10.80 Gutput Capacitance $V_{DS} = 25 \text{ V}, V_{DS} = 0 \text{ V}, I_{D} = 7.8 \text{ A}$ 10.80 Gutput Capacitance $V_{DS} = 25 \text{ V}, V_{DS} = 0 \text{ V}, I_{D} = 7.8 \text{ A}$ 10.80 Gutput Capacitance $V_{DS} = 25 \text{ V}, V_{DS} = 0 \text{ V}, I_{D} = 7.8 \text{ A}$ 10.80 Gutput Capacitance $V_{DS} = 25 \text{ V}, V_{DS} = 0 \text{ V}, I_{D} = 7.8 \text{ A}$ 10.80 Gutput Capacitance $V_{DS} = 25 \text{ V}, V_{DS} = 0 \text{ V}, I_{D} = 7.8 \text{ A}$ 10.80 Gutput Capacitance $V_{DS} = 25 \text{ V}, V_{DS} = 0 \text{ V}, I_{D} = 7.8 \text{ A}$ 10.80 Gutput Capacit

- **Notes:** 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 2.7mH, I_{AS} = 15.6A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C 3. I_{SD} \leq 15.6A, di/dt \leq 300A/ μ s, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width \leq 300 μ s, Duty cycle \leq 2% 5. Essentially independent of operating temperature

Typical Characteristics

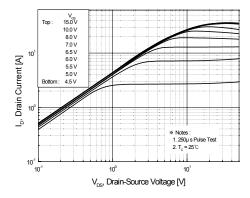


Figure 1. On-Region Characteristics

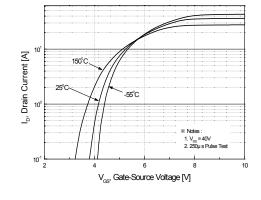


Figure 2. Transfer Characteristics

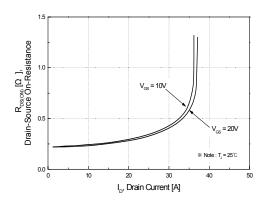


Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage

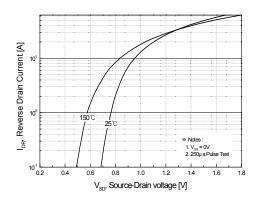


Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature

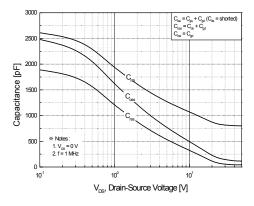


Figure 5. Capacitance Characteristics

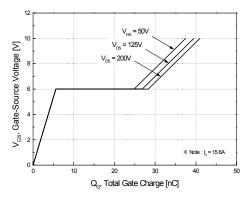


Figure 6. Gate Charge Characteristics

Typical Characteristics (Continued)

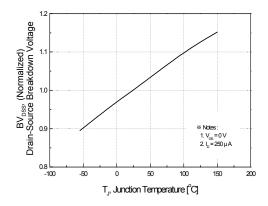


Figure 7. Breakdown Voltage Variation vs Temperature

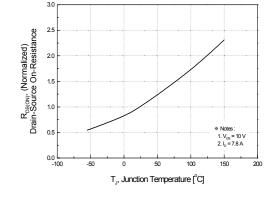


Figure 8. On-Resistance Variation vs Temperature

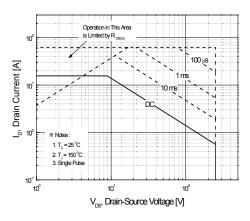


Figure 9-1. Maximum Safe Operating Area for FQP16N25C

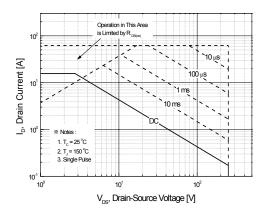


Figure 9-2. Maximum Safe Operating Area for FQPF16N25C

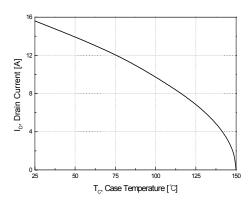


Figure 10. Maximum Drain Current vs Case Temperature

Typical Characteristics (Continued)

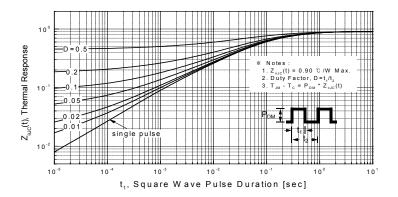
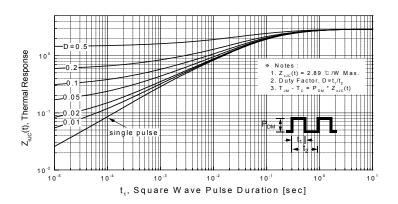
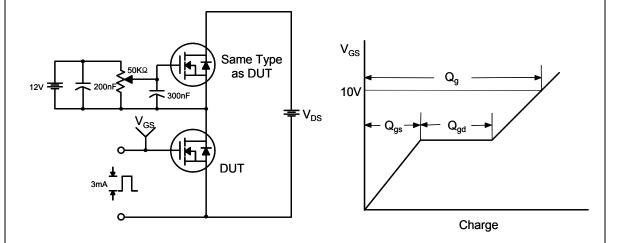
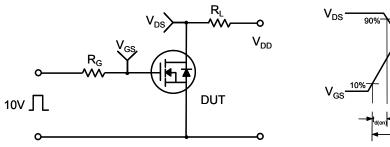
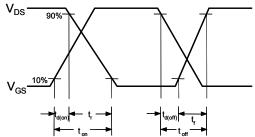
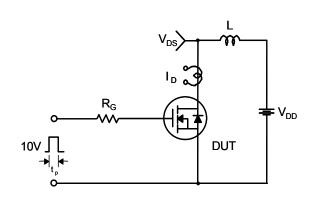


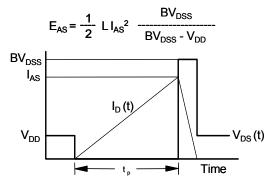
Figure 11-1. Transient Thermal Response Curve for FQP16N25C

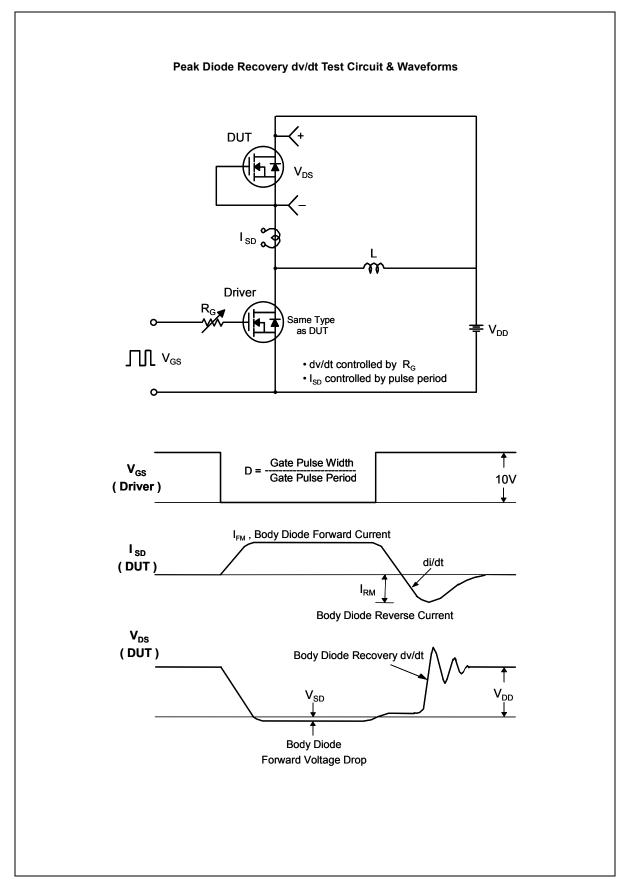




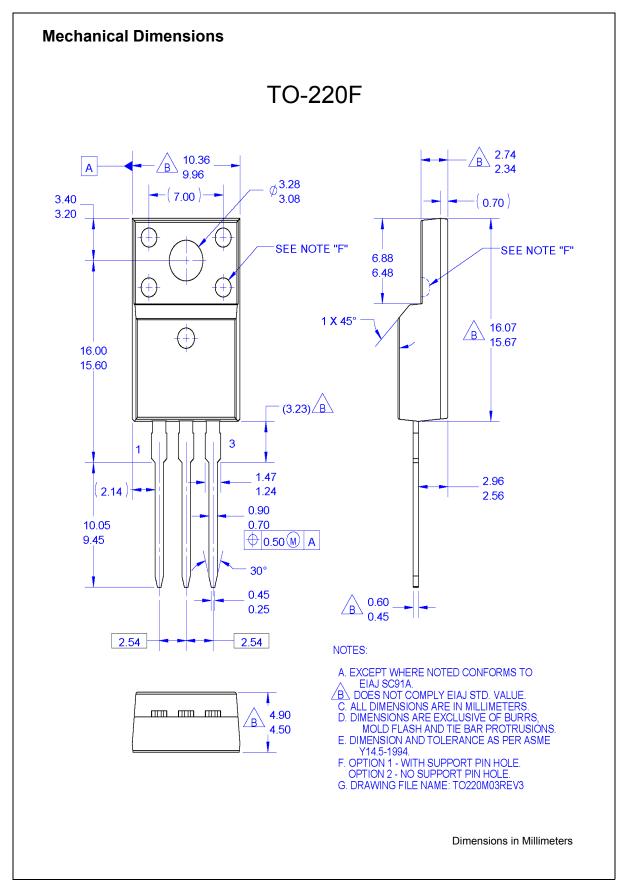

Figure 11-2. Transient Thermal Response Curve for FQPF16N25C

Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching Test Circuit & Waveforms

Mechanical **Dimensions** TO-220 ⊕ 0.36 ♠ B A ♠ В 4.83 3.56 Α 3.43 2.54 6.86 5.84 △13.40 12.19 △9.40 8.38 3 2 1 С 6.35 MAX 14.73 12.70 0.61 △0.33 (1.91) — ⊕ 0.36 M B AM 2.54 NOTES: UNLESS OTHERWISE SPECIFIED A) REFERENCE JEDEC, TO-220, ISSUE K, 5.08 VARIATION AB, DATED APRIL, 2002. B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONING AND TOLERANCING PER DIMENSIONING AND TOLERANCING PER ANSI Y14,5 - 1973 D) LOCATION OF THE PIN HOLE MAY VARY (LOWER LEFT CORNER, LOWER CENTER AND CENTER OF THE PACKAGE) EDOES NOT COMPLY JEDEC STANDARD VALUE, F) "A1" DIMENSIONS REPRESENT LIKE BELOW: ш SINGLE GAUGE = 0.51 - 0.61 DUAL GAUGE = 1.14 - 1.40 G) DRAWING FILE NAME: TO220B03REV6 Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP®* BitSiC™ Build it Now™

CorePLUS™ CorePOWER™ CROSSVOLT™

Current Transfer Logic™ DEUXPEED®

Dual Cool™ EcoSPARK® EfficentMax™

ESBC™

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™

FACT[®] FAST® FastvCore™ FETBench™

FPS™ F-PFS™ FRFET®

Global Power ResourceSM Green Bridge™

Green FPS™ Green FPS™ e-Series™

Gmax™ GTO™ IntelliMAX™ ISOPLANAR™

Marking Small Speakers Sound Louder

and Better™ MegaBuck™

MICROCOUPLER™

MicroFET™ MicroPak™ MicroPak2™

MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ OPTOLOGIC® OPTOPLANAR® PowerTrench® PowerXS™

Programmable Active Droop™

QSTM

Quiet Series™ RapidConfigure™

ng our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

SPM[®] STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ SYSTEM®*

GENERAL

TipyBoost™ TinyBoost TinyBuck™ TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®* uSerDes™ UHC®

Ultra FRFET™ UniFET™ VCXTM VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 164