Onsemi

MOSFET - P-Channel, **POWERTRENCH[®]** -60 V, -13.5 A, 100 mΩ

FDMC5614P, FDMC5614P-L701

General Description

This P-Channel MOSFET is a rugged gate version of onsemi's advanced POWERTRENCH process. It has been optimized for power management applications requiring a wide range of gate drive voltage ratings (4.5 V - 20 V).

Features

- Max $r_{DS(on)} = 100 \text{ m}\Omega$ at $V_{GS} = -10 \text{ V}$, $I_D = -5.7 \text{ A}$
- Max $r_{DS(on)} = 135 \text{ m}\Omega$ at $V_{GS} = -4.5 \text{ V}$, $I_D = -4.4 \text{ A}$
- Low Gate Charge
- Fast Switching Speed
- High Performance Trench Technology for Extremely Low rDS(on)
- High Power and Current Handling Capability
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Power Management
- Load Switch
- Battery Protection

Top

\$Y

&Z

&2

&K

FDMC

5614P

WDFN8 3.3x3.3, 0.65P CASE 511DQ

FDMC5614P, FDMC5614P-L701

MARKING DIAGRAM

= Logo = Assembly Location

- = Date Code (Year and Week)
- = Lot Run Traceability Code
- = Specific Device Code
- = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

1

MOSFET MAXIMUM RATINGS (T_C = 25° C unless otherwise noted)

Symbol	Parameter			Rating	Unit
V _{DS}	Drain to Source Voltage			-60	V
V _{GS}	Gate to Source Voltage			±20	V
ID	Drain Current	Continuous (Package Limited)	$T_{C} = 25^{\circ}C$	-13.5	А
		Continuous (Silicon Limited)	$T_{\rm C} = 25^{\circ}{\rm C}$	-14	
		Continuous (Note 1a)	T _A = 25°C	-5.7	
		Pulsed		-23	
P _D	Power Dissipation		$T_{C} = 25^{\circ}C$	42	W
	Power Dissipation (Note 1a) $T_A = 25^{\circ}C$		2.1		
T _J , T _{STG}	Operating and Storage Junction Temperature Range			–55 to + 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter		Unit
Rejc	Thermal Resistance, Junction to Case	3.0	°C/W
RθJA	Thermal Resistance, Junction to Ambient (Note 1a)	60	

1. $R_{\theta,JA}$ is determined with the device mounted on a 1 in² oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,JA}$ is determined by the user's board design. a. $R_{\theta,JA} = 60^{\circ}$ C/W when mounted on a 1 in² oz copper, 1.5' x 1.5' x 0.062' thick PCB. b. $R_{\theta,JA} = 135^{\circ}$ C/W when mounted on a minimum pad of 2 oz copper.

2. Pulse Test: Pulse Width < 300 µs, Duty cycle < 2.0%.

a. $60^{\circ}C/W$ when mounted on a 1 in² pad of 2 oz copper

b. 135°C/W when mounted on a minimum pad of 2 oz copper

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
FF CHARA	ACTERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \ \mu A, \ V_{GS} = 0 \ V$	-60	-	-	V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Co- efficient	$I_D = -250 \ \mu\text{A}$, referenced to 25°C	-	-54	_	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -48 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	-	-	-1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20$ V, $V_{DS} = 0$ V	-	-	±100	nA
N CHARA	CTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = -250 \ \mu A$	-1.0	-1.95	-3	V
$\frac{\Delta V_{\text{GS(th)}}}{\Delta T_{\text{J}}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, referenced to 25°C	-	4.7	_	mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = -10 V, I _D = -5.7 A	-	84	100	mΩ
		$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -4.4 \text{ A}$	-	108	135	
		V_{GS} = -10 V, I _D = -5.7 A, T _J = 125°C	-	140	168	
9 _{FS}	Forward Transconductance	V _{DS} = -15 V, I _D = -5.7 A	-	11	-	S
YNAMIC C	HARACTERISTICS		•		•	
C _{iss}	Input Capacitance	V_{DS} = -30 V, V_{GS} = 0 V, f = 1 MHz	-	795	1055	pF
C _{oss}	Output Capacitance	1	-	140	185	pF
C _{rss}	Reverse Transfer Capacitance	1	-	60	90	pF
WITCHING	CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -30 \text{ V}, \text{ I}_{D} = -1.0 \text{ A},$	-	10	21	ns
t _r	Rise Time	$V_{GS} = -10 \text{ V}, \overline{\text{R}}_{\text{GEN}} = 6 \Omega$	-	11	23	ns
t _{d(off)}	Turn-Off Delay Time	1	-	32	65	ns
t _f	Fall Time	1	_	11	22	ns
Q _{g(TOT)}	Total Gate Charge at 10 V	$V_{GS} = -10$ V, $V_{DD} = -30$ V, $I_D = -5.7$ A	-	15	20	nC
Q _{gs}	Gate to Source Gate Charge	1	_	1.6	2.1	nC
Q _{gd}	Gate to Drain "Miller" Charge		_	2.7	3.5	nC
RAIN-SOL	JRCE DIODE CHARACTERISTICS					
V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0$ V, $I_{S} = -3.2$ A	-	-0.8	-1.2	V
t _{rr}	Reverse Recovery Time	I _F = -3.2 A, di/dt = 100 A/µs	-	-	36	ns
Q _{rr}	Reverse Recovery Charge	1	_	_	29	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

www.onsemi.com

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Figure 7. Gate Charge Characteristics

Figure 8. Capacitance vs. Drain to Source Voltage

Figure 9. Unclamped Inductive Switching Capability

Figure 10. Forward Bias Safe Operating Area

Figure 11. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)

Figure 12. Transient Thermal Response Curve

ORDERING INFORMATION

Device	Device Marking	Package Type	Reel Size	Tape Width	Shipping [†]
FDMC5614P	FDMC5614P	WDFN8 3.3x3.3, 0.65P Power 33 (Pb-Free)	7"	8 mm	3000 / Tape & Reel
FDMC5614P-L701	FDMC5614P	WDFN8 3.3x3.3, 0.65P Power 33 (Pb–Free)	7"	8 mm	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>