General Description The AOZ8312 is a transient voltage suppressor array designed to protect high speed data lines from ESD and lightning. This AOZ8312 incorporates twelve low capacitance steering diodes and a TVS in a single package. During transient conditions, the steering diodes direct the transient to either the positive side of the power supply line or to ground. The AOZ8312 may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 and IEC 61000-4-5. The TVS diodes provide effective suppression of ESD voltages: ±30 kV (air discharge) and ±30 kV (contact discharge). The AOZ8312 comes in a Halogen Free and RoHS compliant 3.5 mm x 2.5 mm x 0.55 mm DFN-12 package and is rated over a -40 °C to +85 °C ambient temperature range. The AOZ8312 is compatible with both lead free and SnPb assembly techniques. The small size, low capacitance and high ESD protection makes the AOZ8312 ideal for protecting high speed video and data communication interfaces. #### **Features** - ESD protection for high-speed data lines: - IEC 61000-4-2, level 4 (ESD) immunity test - ±30 kV (air discharge) and ±30 kV (contact discharge) - IEC 61000-4-4 (EFT) 40 A (5/50 ns) - IEC 61000-4-5 (Lightning) 18 A - Human Body Model (HBM) ±30 kV - Small package saves board space - Low insertion loss - Protects twelve I/O lines - Low clamping voltage - Low operating voltage: 2.5 V - Green product - Pb-free device ## **Applications** - Video graphics cards - Monitors and flat panel displays - Digital Video Interface (DVI) - T1/E1 telecom ports ### **Typical Application** **Protection of Twelve Lines** # **Circuit Diagram** ## **Ordering Information** | Part Number | Ambient Temperature Range | Package | Environmental | |-------------|---------------------------|------------------------|---------------| | AOZ8312DI | -40 °C to +85 °C | 3.5 mm x 2.5 mm DFN-12 | Green Product | AOS Green Products use reduced levels of Halogens, and are also RoHS compliant. Please visit www.aosmd.com/media/AOSGreenPolicy.pdf for additional information. # **Pin Configuration** ## **Absolute Maximum Ratings** Exceeding the Absolute Maximum ratings may damage the device. | Parameter | Rating | |---|-------------------| | Peak Pulse Current (I _{PP}), t _P = 8/20 μs | 18 A | | Peak Power Dissipation (8 x 20 μs@ 25 °C) | 160 W | | Storage Temperature (T _S) | -65 °C to +150 °C | | ESD Rating per IEC61000-4-2, Contact ⁽¹⁾ | ±30 kV | | ESD Rating per IEC61000-4-2, Air ⁽¹⁾ | ±30 kV | | ESD Rating per Human Body Model ⁽²⁾ | ±30 kV | #### **Notes** - 1. IEC 61000-4-2 discharge with C_Discharge = 150 pF, R_Discharge = 330 $\Omega.$ - 2. Human Body Discharge per MIL-STD-883, Method 3015 $C_{Discharge}$ = 100 pF, $R_{Discharge}$ = 1.5 k Ω . # **Maximum Operating Ratings** | Parameter | Rating | |--|-------------------| | Junction Temperature (T _J) | -40 °C to +125 °C | Rev. 1.0 August 2013 www.aosmd.com Page 2 of 7 ## **Electrical Characteristics** $T_A = 25$ °C unless otherwise specified. | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Units | |------------------|---------------------------|--|------|------|------|-------| | V _{RWM} | Reverse Working Voltage | Between any I/O pin 5 and GND ⁽⁴⁾ | | | 2.5 | V | | I _R | Reverse Leakage Current | V _{RWM} = 2.5 V, between any I/O pin 5 and GND | | | 1 | μΑ | | V_{BR} | Reverse Breakdown Voltage | I _T = 100 μA | 2.8 | | | V | | V _{CL} | Channel Clamp Voltage | $I_{PP} = 2 \text{ A}$, tp = 8/20 µs, any I/O pin to $GND^{(3)}$ | | | | | | | Positive Transients | | | | 3.5 | V | | | Channel Clamp Voltage | $I_{PP} = 10 \text{ A}$, tp = 8/20 µs, any I/O pin to GND ⁽³⁾ | | | | | | | Positive Transients | | | | 6.5 | V | | | Channel Clamp Voltage | $I_{PP} = 18 \text{ A}$, $tp = 8/20 \mu\text{s}$, any I/O pin to $GND^{(3)}$ | | | | | | | Positive Transients | | | | 9 | V | | C _j | Junction Capacitance | $V_R = 0 \text{ V}, f = 1 \text{ MHz}, \text{ any I/O pin to Ground}$ | | 2.3 | 3.5 | pF | | | | $V_R = 0 \text{ V, f} = 1 \text{ MHz, between I/O pins}^{(3)}$ | | 1.2 | | pF | #### Notes: - 3. These specifications are guaranteed by design. - $4. \ The \ working \ peak \ reverse \ voltage, \ V_{RWM}, \ should \ be \ equal \ to \ or \ greater \ than \ the \ DC \ or \ continuous \ peak \ operating \ voltage \ level.$ - 5. V_{BR} is measured at the pulse test current I_{T} . # **Typical Performance Characteristics** #### Capacitance vs. Reverse Bias Rev. 1.0 August 2013 www.aosmd.com Page 4 of 7 # Package Dimensions, DFN 3.5mm x 2.5mm x 0.55mm, 12L, EP2 **BOTTOM VIEW** ### **RECOMMENDED LAND PATTERN** # | Symbols | Min. | Nom. | Max. | Symbols | Min. | Nom. | Max. | | |---------|-------------|----------|------|---------|-----------|---------|-------|--| | Α | 0.50 | 0.55 | 0.60 | Α | 0.020 | 0.022 | 0.024 | | | A1 | 0.00 | _ | 0.05 | A1 | 0.000 | _ | 0.002 | | | A2 | | (0.15) | | A2 | | | | | | b | 0.15 | 0.20 | 0.25 | b | 0.006 | 0.008 | 0.010 | | | b1 | 0.10 | 0.20 | 0.30 | b1 | 0.004 | 0.008 | 0.012 | | | D | 3.40 | 3.50 | 3.60 | D | 0.134 | 0.138 | 0.142 | | | E | 2.40 | 2.50 | 2.60 | E | 0.094 | 0.102 | | | | е | (| 0.50 BSC | | е | 0.020 BSC | | | | | e1 | (| 0.60 BSC | | e1 | 0.024 BSC | | | | | e2 | | 1.10 BSC | ; | e2 | 0.043 BSC | | | | | e3 | | 1.10 BSC | ; | e3 | 0.043 BSC | | | | | k1 | | (0.20) | | k1 | | | | | | k2 | (0.30) | | | k2 | | (0.012) | | | | k3 | | (0.13) | | k3 | | | | | | L | 0.30 0.35 0 | | 0.40 | L | 0.012 | 0.014 | 0.016 | | | L1 | 0.25 | 0.30 | 0.35 | L1 | 0.010 | 0.012 | 0.014 | | | L2 | 0.30 | 0.35 | 0.40 | L2 | 0.012 | 0.014 | 0.016 | | | L3 | 0.90 | 1.00 | 1.10 | L3 | 0.035 | 0.039 | 0.043 | | #### Notes: - 1. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact. - 2. Tolerance: ±0.05 unless otherwise specified. - 3. Radius on all corners is 0.152 max., unless otherwise specified. - 4. Package warpage: 0.012 max. - 5. No any plastic flash allowed on the top and bottom lead surface. - 6. Pad planarity: ±0.102. - 7. Crack between plastic body and lead is not allowed. # Tape and Reel Dimensions, DFN 3.5mm x 2.5mm x 0.55mm, 12L, EP2 # **Carrier Tape** UNIT: mm Feeding Direction | Package | A0 | B0 | K0 | D0 | D1 | W | E1 | F | P0 | P1 | P2 | Т | |---------|-------|-------|-------|-----------|-----------|-------|-------|-------|-------|-------|-------|-------| | DFN | 2.75 | 3.75 | 0.75 | 1.50 | 1.00 | 12.00 | 1.75 | 5.50 | 4.00 | 8.00 | 2.00 | 0.25 | | 3.5x2.5 | ±0.05 | ±0.05 | ±0.10 | +0.1/-0.0 | +0.1/-0.0 | ±0.30 | ±0.10 | ±0.05 | ±0.10 | ±0.10 | ±0.05 | ±0.05 | #### Reel UNIT: mm | Tape Size | Reel Size | М | N | W | W1 | Н | S | K | |-----------|-----------|------|------|------|------|-----------|------|-------| | 12mm | ø178 | ø178 | ø54 | 17 | 13.5 | ø13 | 2.2 | 10.25 | | | | ±1.0 | ±0.5 | ±2.0 | ±0.5 | +0.5/-0.2 | ±0.3 | ±0.2 | # Leader / Trailer & Orientation Unit Per Reel: 2000 pcs ## **Part Marking** #### **LEGAL DISCLAIMER** Applications or uses as critical components in life support devices or systems are not authorized. AOS does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations. AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale #### LIFE SUPPORT POLICY ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Rev. 1.0 August 2013 www.aosmd.com Page 7 of 7