Power MOSFET and Schottky Diode -20 V, FETKY[™], P-Channel, -4.4 A, with 3.7 A Schottky Barrier Diode, ChipFET[™] #### **Features** - Leadless SMD Package Featuring a MOSFET and Schottky Diode - 40% Smaller than TSOP-6 Package - Leadless SMD Package Provides Great Thermal Characteristics - Independent Pinout to each Device to Ease Circuit Design - Trench P-Channel for Low On Resistance - Ultra Low V_F Schottky - These are Pb-Free Devices #### **Applications** - Li-Ion Battery Charging - High Side DC-DC Conversion Circuits - High Side Drive for Small Brushless DC Motors - Power Management in Portable, Battery Powered Products #### MOSFET MAXIMUM RATINGS (T_{.I} = 25°C unless otherwise noted) | Param | Parameter | | | | Units | |--|-----------------------------------|------------------------|-----------------|------|-------| | Drain-to-Source Voltag | V_{DSS} | -20 | V | | | | Gate-to-Source Voltage |) | | V_{GS} | ±8.0 | V | | Continuous Drain | I Steady I 'J = | | I _D | -3.2 | Α | | Current (Note 1) | State | T _J = 85°C | | -2.3 | | | | t ≤ 5 s T _J = 25°C | | | -4.4 | | | Power Dissipation (Note 1) | Steady
State | T _{.1} = 25°C | P _D | 1.1 | W | | | t ≤ 5 s | | | 2.1 | | | Pulsed Drain Current | t _p = | 10 μs | I _{DM} | -13 | Α | | Operating Junction and | T _J , T _{STG} | -55 to
150 | °C | | | | Source Current (Body D | I _S | 2.5 | Α | | | | Lead Temperature for So
(1/8" from case for 1 | | urposes | TL | 260 | °C | # SCHOTTKY DIODE MAXIMUM RATINGS (T_{.I} = 25°C unless otherwise noted) | Parai | Symbol | Value | Units | | | |--------------------------------------|-----------------|-----------------------|----------------|-----|---| | Peak Repetitive Rever | V_{RRM} | 20 | V | | | | DC Blocking Voltage | V_R | 20 | V | | | | Average Rectified
Forward Current | Steady
State | T _J = 25°C | I _F | 2.2 | V | | | t ≤ 5 s | | | 3.7 | Α | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces). # ON Semiconductor® http://onsemi.com | MOSFET | | | | | | | |----------------------|-------------------------|--------------------|--|--|--|--| | V _{(BR)DSS} | R _{DS(on)} TYP | I _D MAX | | | | | | 20.17 | 64 mΩ @ -4.5 V | 4.4.4 | | | | | | -20 V | 85 mΩ @ -2.5 V | -4.4 A | | | | | #### **SCHOTTKY DIODE** | V _R MAX | V _F TYP | I _F MAX | |--------------------|--------------------|--------------------| | 20 V | 0.35 V | 3.7 A | ChipFET CASE 1206A STYLE 3 DA = Specific Device Code M = Month Code Pb-Free Package #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. #### THERMAL RESISTANCE RATINGS | Parameter | Symbol | Max | Units | |---|----------------|-----|-------| | Junction-to-Ambient - Steady State (Note 2) | $R_{ heta JA}$ | 113 | °C/W | | Junction-to-Ambient – $t \le 10 \text{ s}$ (Note 2) | $R_{ hetaJA}$ | 60 | °C/W | ^{2.} Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces). # MOSFET ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted) | Parameter | Symbol | Test Conditions | | Min | Тур | Max | Units | |--|--------------------------------------|--|------------------------|-------|------|------|-------| | OFF CHARACTERISTICS | • | | | | • | - | • | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | V _{GS} = 0 V, I _D = - | -250 μΑ | -20 | | | V | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V _{(BR)DSS} /T _J | | | | -15 | | mV/°C | | Zero Gate Voltage Drain Current | I _{DSS} | V _{DS} = -16 V,
V _{GS} = 0 V | $T_J = 25^{\circ}C$ | | | -1.0 | μΑ | | | | V _{GS} = 0 V | T _J = 125°C | | | -5.0 | 1 | | Gate-to-Source Leakage Current | I _{GSS} | V _{DS} = 0 V, V _{GS} : | = ±8.0 V | | | ±100 | nA | | ON CHARACTERISTICS (Note 3) | | | | | | | | | Gate Threshold Voltage | V _{GS(TH)} | $V_{GS} = V_{DS}, I_D =$ | -250 μΑ | -0.45 | | -1.5 | V | | Gate Threshold Temperature Coefficient | V _{GS(TH)} /T _J | | | | 2.7 | | mV/°C | | Drain-to-Source On-Resistance | R _{DS(on)} | V _{GS} = -4.5, I _D = | : -3.2 A | | 64 | 80 | mΩ | | | | V _{GS} = -2.5, I _D = | -2.2 A | | 85 | 110 | 1 | | | | V _{GS} = -1.8, I _D = -1.0 A | | | 120 | 170 | 1 ! | | Forward Transconductance | 9FS | $V_{DS} = -10 \text{ V}, I_D = -2.9 \text{ A}$ | | | 8.0 | | S | | CHARGES AND CAPACITANCES | | | | | | | | | Input Capacitance | C _{ISS} | $V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$
$V_{DS} = -10 \text{ V}$ | | | 680 | | pF | | Output Capacitance | C _{OSS} | | | | 100 | | 1 | | Reverse Transfer Capacitance | C _{RSS} | | | | 70 | | | | Total Gate Charge | Q _{G(TOT)} | | | | 7.4 | | nC | | Threshold Gate Charge | Q _{G(TH)} | $V_{GS} = -4.5 \text{ V, } V_{DS}$ | s = -10 V, | | 0.6 | | 1 | | Gate-to-Source Charge | Q _{GS} | $V_{GS} = -4.5 \text{ V}, V_{DS}$ $I_{D} = -3.2$ | Á | | 1.4 | | 1 | | Gate-to-Drain Charge | Q_{GD} | 1 | | | 2.5 | | 1 | | SWITCHING CHARACTERISTICS (Note 4 | 1) | | | | | | | | Turn-On Delay Time | t _{d(ON)} | | | | 5.8 | | ns | | Rise Time | t _r | V _{GS} = -4.5 V, V _{DE} | n = −10 V. | | 11.7 | | 1 | | Turn-Off Delay Time | t _{d(OFF)} | $I_D = -3.2 \text{ A}, R_G$ | | | 16 | | 1 | | Fall Time | t _f | 1 | | | 12.4 | | 1 | | DRAIN-SOURCE DIODE CHARACTERIS | STICS | | | | | | | | Forward Diode Voltage | V_{SD} | $V_{GS} = 0 \text{ V}, I_{S} = -2.5 \text{ A}$ | T _J = 25°C | | -0.8 | -1.2 | V | | Reverse Recovery Time | t _{RR} | | | | 13.5 | | ns | | Charge Time | ta | V _{GS} = 0 V, I _S = - | -1.0 A , | | 9.5 | | 1 | | Discharge Time | t _b | $dl_S/dt = 100$ | | | 4.0 | | 1 | | Reverse Recovery Charge | Q _{RR} | 1 | | | 6.5 | | nC | # SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) | Parameter | Symbol | Test Conditions | Min | Тур | Max | Units | |-----------------------------------|------------------|------------------------------|-----|-----|-------|-------| | Maximum Instantaneous | V _F | I _F = 0.1 A | | | 0.31 | V | | Forward Voltage | | I _F = 1.0 A | | | 0.365 | | | Maximum Instantaneous | I _R | V _R = 10 V | | | 0.75 | mA | | Reverse Current | | V _R = 20 V | | | 2.5 | | | Non-Repetitive Peak Surge Current | I _{FSM} | Halfwave, Single Pulse 60 Hz | | | 23 | Α | Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%. Switching characteristics are independent of operating junction temperatures. #### TYPICAL P-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted) $V_{DS} \ge -10 \text{ V}$ 8 I_{D.} DRAIN CURRENT (AMPS) 7 6 5 4 3 $T_C = -55^{\circ}C$ 2 25°C 100°C 0 0 0.5 1.5 2.5 3 3.5 2 Figure 1. On-Region Characteristics $-V_{GS}$, GATE-TO-SOURCE VOLTAGE (VOLTS) Figure 2. Transfer Characteristics Figure 3. On-Resistance vs. Gate-to-Source Voltage Figure 4. On-Resistance vs. Drain Current and Gate Voltage Figure 5. On-Resistance Variation with Temperature Figure 6. Drain-to-Source Leakage Current vs. Voltage # **TYPICAL P-CHANNEL PERFORMANCE CURVES** (T_J = 25°C unless otherwise noted) GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS) Figure 7. Capacitance Variation Figure 9. Resistive Switching Time Variation vs. Gate Resistance # Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge Figure 10. Diode Forward Voltage vs. Current # TYPICAL SCHOTTKY PERFORMANCE CURVES (T_J = 25°C unless otherwise noted) Figure 11. Typical Forward Voltage Figure 12. Maximum Forward Voltage **Figure 13. Typical Reverse Current** Figure 14. Maximum Reverse Current Figure 16. Forward Power Dissipation # **DEVICE ORDERING INFORMATION** | Device | Package | Shipping [†] | |---------------|----------------------|-----------------------| | NTHD3133PFT1G | ChipFET
(Pb-Free) | 3000 / Tape & Reel | | NTHD3133PFT3G | ChipFET
(Pb-Free) | 10000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. **ChipFET™** **DATE 19 MAY 2009** #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - MOLD GATE BURRS SHALL NOT EXCEED 0.13 MM PER SIDE. LEADFRAME TO MOLDED BODY OFFSET IN HORIZONTAL - AND VERTICAL SHALL NOT EXCEED 0.08 MM. DIMENSIONS A AND B EXCLUSIVE OF MOLD GATE BURRS. - NO MOLD FLASH ALLOWED ON THE TOP AND BOTTOM LEAD | | MILLIMETERS | | | | INCHES | | |-----|-------------|----------|------|-------|-----------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 1.00 | 1.05 | 1.10 | 0.039 | 0.041 | 0.043 | | b | 0.25 | 0.30 | 0.35 | 0.010 | 0.012 | 0.014 | | С | 0.10 | 0.15 | 0.20 | 0.004 | 0.006 | 0.008 | | D | 2.95 | 3.05 | 3.10 | 0.116 | 0.120 | 0.122 | | E | 1.55 | 1.65 | 1.70 | 0.061 | 0.065 | 0.067 | | е | | 0.65 BSC | | | 0.025 BSC | | | e1 | | 0.55 BSC | | | 0.022 BSC | | | L | 0.28 | 0.35 | 0.42 | 0.011 | 0.014 | 0.017 | | HE | 1.80 | 1.90 | 2.00 | 0.071 | 0.075 | 0.079 | | θ | | 5° NOM | | | 5° NOM | | | STYLE 1: | STYLE 2: | STYLE 3: | STYLE 4: | STYLE 5: | STYLE 6: | |--------------------------|----------------------------|---------------------------|-----------------------------|---------------------------|--------------------------| | PIN 1. DRAIN | PIN 1. SOURCE 1 | PIN 1. ANODE | PIN 1. COLLECTOR | PIN 1. ANODE | PIN 1. ANODE | | DRAIN | GATE 1 | 2. ANODE | COLLECTOR | ANODE | 2. DRAIN | | DRAIN | SOURCE 2 | SOURCE | COLLECTOR | DRAIN | 3. DRAIN | | GATE | 4. GATE 2 | 4. GATE | 4. BASE | DRAIN | 4. GATE | | SOURCE | 5. DRAIN 2 | 5. DRAIN | EMITTER | SOURCE | SOURCE | | DRAIN | 6. DRAIN 2 | 6. DRAIN | COLLECTOR | 6. GATE | 6. DRAIN | | 7. DRAIN | 7. DRAIN 1 | CATHODE | COLLECTOR | CATHODE | 7. DRAIN | | 8. DRAIN | 8. DRAIN 1 | CATHODE | COLLECTOR | CATHODE | 8. CATHODE / DRAIN | # **SOLDERING FOOTPRINT** #### **GENERIC MARKING DIAGRAM*** = Specific Device Code XXX М = Month Code = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. # **OPTIONAL SOLDERING FOOTPRINTS ON PAGE 2** | DOCUMENT NUMBER: | 98AON03078D | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-------------|--|-------------|--|--| | DESCRIPTION: | ChipFET | | PAGE 1 OF 2 | | | ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. **DATE 19 MAY 2009** # **ADDITIONAL SOLDERING FOOTPRINTS*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. | DOCUMENT NUMBER: | 98AON03078D | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-------------|---|-------------|--|--| | DESCRIPTION: | ChipFET | | PAGE 2 OF 2 | | | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales